Crystal and Molecular Structure of the Germacrane Furanosesquiterpenoid Linderalactone

By Hirozo Koyama ${ }^{\text {• and Yoshiko Mizuno-Tsukuda, Shionogi Research Laboratory, Shionogi \& Co., Ltd., }}$ Fukushima-ku, Osaka, 553, Japan
The crystal structure of the title compound (I) has been determined by three-dimensional X-ray analysis from diffractometer data. Crystals are monoclinic, $a=8.804(1), b=11.194(2), c=6.630(1) \AA, \beta=105.6(2)^{\circ}, Z=2$, space group $P 2_{1}$. The structure was solved by direct methods and refined by full-matrix least-squares calculations to a final R of 0.064 for 941 independent observed reflexions. Hydrogen atoms were located from a differenceFourier synthesis. The molecule consists of a furan, γ-lactone, and ten-membered ring. The conformation of the ten-membered ring was similar to those previously observed in several other germacrane sesquiterpenoids. The transannular separation in the ten-membered ring is distinctly short [C(1) $\cdots \mathrm{C}(4) 2.78 \AA$].

Linderalactone, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$, a germacrane furanosesquiterpenoid isolated ${ }^{1}$ from the root of Lindera strychnifolia, was assigned ${ }^{2,3}$ the structure (I) on the basis of

(I)
${ }^{1}$ K. Takeda, H. Minato, and M. Ishikawa, J. Chem. Soc., 1964, 4578.
${ }^{2}$ K. Takeda, I. Horibe, M. Teraoka-Miyawaki, and H. Minato, Chem. Comm., 1968, 637.
chemical and spectroscopic investigations. In conjunction with this study, we have recently determined ${ }^{4}$ the structure of lindenenol. The present X-ray crystal structure analysis was undertaken in order to elucidate the detailed stereochemistry of linderalactone (I).

EXPERIMENTAL

Crystals were prepared ${ }^{5}$ and recrystallized from acetonelight petroleum as colourless prisms, m.p. $136-138{ }^{\circ} \mathrm{C}$,
${ }^{3}$ K. Takeda, K. Tori, I. Horibe, M. Ohtsuru, and H. Minato, J. Chem. Soc. (C), 1970, 2697.
${ }^{4}$ Y. Mizuno-Tsukuda and H. Koyama, J.C.S. Perkin II, 1974, 735.
${ }^{5}$ M. Teraoka-Miyawaki, ref. 2.
elongated along the b axis. Preliminary cell data were determined from Weissenberg and precession photographs by use of $\mathrm{Cu}-K_{\alpha}(\lambda 1.5418 \AA$) radiation, and accurate unitcell dimensions were obtained by least-squares refinement of the setting angles of 20 reflexions measured on the automatic diffractometer.

Crystal Data.- $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}, \quad M=244.2$. Monoclinic, $a=$ $8.804(1), \quad b=11.194(2), \quad c=6.630(1) ~ \AA, \quad \beta=105.6(2)^{\circ}$, $U=630.2 \AA^{3}, D_{\mathrm{m}}=1.288$ (by flotation), $Z=2, D_{\mathrm{c}}=$ $1.287 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=260$. Space group $P 2_{1}\left(\mathrm{C}_{2}^{2}\right)$ from systematic absences: $0 k 0$ when k is odd. Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=0.900 \mathrm{~cm}^{-1}$.

Three-dimensional intensity data were collected on a Hilger and Watts automatic four-circle Y 290 diffractometer controlled by a PDP 8 computer. Integrated intensities were measured for $\theta<27.5^{\circ}$ by the $\theta-2 \theta$ scan technique with $\mathrm{Mo}-K_{\alpha}$ radiation and a scintillation counter (with a Zirconium filter and pulse-height analyser). Each reflexion was integrated in 80 steps of intervals of 0.01°. A standard reflexion was monitored every 10 reflexions. The scan counts (P) and background counts (B_{1}, B_{2}) were combined to yield the integrated intensities $I=P-2\left(B_{1}+B_{2}\right)$.

In this way 1526 independent reflexions were recorded, of which 941 were considered observed, having intensities $I>3 \sigma(I)$, and were used in the subsequent analysis. All intensities were corrected for Lorentz and polarization factors, and the normalized structure factors $|E|$ as well as structure amplitudes $|F|$ were derived. No absorption corrections were applied since the specimen was considered to be sufficiently small $(0.25 \times 0.31 \times 0.27 \mathrm{~mm})$.

Structure Analysis.-The structure was solved by direct methods, using the programme DIRECTER for automatic structure analysis, written ${ }^{6}$ for the CDC 6600 computer.

Table 1

A simplified layout of the calculation
Start \longrightarrow Input data \longrightarrow
\rightarrow Origin: (1), Definition (origin, enantiomorph); 3 kinds of origin sets
\rightarrow Symbol: (II), Calculation (phase relationships); starting sets (with additional symbols)
\longrightarrow Tangent I: (III), Tangent refinement; select (best starting sets $\leqslant 5$). Criteria: R, Q, α, t
\rightarrow Tangent II: Phase recalculation (E maps by best sets)
$\rightarrow E$ Map: (IV) 3-d E map; scan and sort (peak heights and co-ordinates); peaks, atoms
\rightarrow Figure: (V), Plot projection of molecule; equ. point bond distance; F, E, ϕ Table

This large program has been constructed from several others ${ }^{7-11}$ in order to solve the crystal structure completely automatically. When the data are loaded, the program carries out the sequence of calculations listed (Table 1).

[^0]Using 163 reflexions with $|E|>1.50$, the programme automatically selects three kinds of origin sets and Σ_{2} relationships were generated. This procedure yielded 364 starting sets as input to the tangent I formula.

Selection of the best five phase sets in tangent refinement I is based on the low values of R and Q, and the high values of α and t. On this basis, E maps were calculated and the atomic co-ordinates of 18 light atoms were found. The approximate co-ordinates of the 18 atoms were refined ${ }^{12}$ isotropically by three cycles of full-matrix least-squares calculations to $R 0.126$, and anisotropically to $R 0.077$ using a CDC 6600 computer. At this stage, a three-dimensional difference-Fourier synthesis was calculated and the positions of the 16 hydrogen atoms were found. The final five cycles of full-matrix least-squares refinement decreased R to 0.064 for the 941 observed reflexions. In this refinement a weighting scheme of the type given by Cruickshank was applied, i.e. $w=\left(a+b\left|F_{0}\right|+c\left|F_{0}\right|^{2}\right)^{-1}$, where $a=1.16$, $b=-0.09$, and $c=0.025$. All hydrogen atoms were included in the final refinement with isotropic temperature factors (B values fixed at $2.50 \AA^{2}$).

Observed and calculated structure amplitudes and anisotropic thermal parameters are listed in Supplementary Publication No. SUP 21907 (4 pp., 1 microfiche).* Atomic scattering factors used in all calculations were taken from ref. 13 for non-hydrogen and from ref. 14 for hydrogen atoms. Final positional parameters with their estimated standard deviations are given in Tables 2 and 3.

RESULTS AND DISCUSSION

The absolute configuration of the molecule has already been determined ${ }^{2,3}$ by a Cope rearrangement and n.m.r.

Figure 1 An ORTEP drawing of the linderalactone
spectral data. This results leads to the conclusion that the parameter of Tables 2 and 3 represent the left-hand co-ordinate system. The absolute configuration of the
${ }^{10}$ W. D. S. Motherwell and N. W. Isaacs, SNOOPY, Program for Choosing Starting Sets for Tangent Formula Structure Solution Methods, University Chemical Laboratory, Cambridge, 1971.
${ }_{11}$ P. Main and M. M. Woolfson, G. Germain, MULTAN, Program for Automatic Solution of Crystal Structure, Department of Physics, University of York, York, 1971.
${ }^{12}$ W. L. Busing, K. O. Martin, and H. A. Levy, ORFLS, A Fortran Crystallographic Least-squares Program, Oak Ridge National Laboratory, Tennessee, Report ORNL TM 305, 1962.
${ }^{13}$ P. A. Doyle and P. S. Turner, Acta Cryst., 1968, A24, 390.
${ }^{14}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
molecule of linderalactone is illustrated ${ }^{15}$ in Figure 1. The molecule consists of the three rings, as predicted from the chemical evidence: a furan ring, a γ-lactone ring, and a ten-membered ring which contains two trans double bonds at the $C(1)-C(10)$ and $C(4)-C(5)$ positions. The hydrogen atom at $C(6)$ lies on the β-face of the molecule. The conformation of the ten-membered ring

Table 2
Final fractional atomic co-ordinates ($\times 1 \mathbf{1 0}^{4}$) with estimated standard deviations in parentheses

Atom	x	y	z
$\mathrm{O}(1)$	6 971(5)	2 428(0)	$2389(7)$
$\mathrm{O}(2)$	$5823(6)$	6 151(5)	3 792(8)
$\mathrm{O}(3)$	7342 (8)	7 713(7)	$5224(10)$
C(1)	$9313(9)$	4421 (8)	8 748(12)
$\mathrm{C}(2)$	9 600(12)	5 653(9)	$9536(14)$
$\mathrm{C}(3)$	8 041(12)	6 287(10)	9 404(15)
C(4)	$6887(9)$	6 053(7)	7 315(10)
C(5)	6 031(9)	$5080(9)$	6 783(11)
C(6)	5327 (8)	$5023(8)$	4 527(11)
C(7)	5821 (8)	3 988(7)	3 389(10)
$\mathrm{C}(8)$	$7002(8)$	3 202(7)	3 966(12)
C(9)	$8335(11)$	$2964(8)$	5900 (14)
$\mathrm{C}(10)$	9 208(8)	4 082(7)	$6800(10)$
$\mathrm{C}(11)$	4 949(8)	3 688(7)	$1311(10)$
C (12)	5 719(9)	2 732(7)	$778(11)$
$\mathrm{C}(13)$	3 521(9)	4 294(9)	8(15)
C (14)	$9888(11)$	4 758(11)	5 299(14)
C(15)	6 774(10)	$6764(8)$	5 458(11)

Table 3
Final fractional hydrogen atom co-ordinates ($\times 10^{3}$)

Atom	x	y	z
H(1)	860	395	940
$\mathrm{H}(2 \mathrm{a})$	1011	610	867
$\mathrm{H}(2 \mathrm{~b})$	1022	558	1078
H(3a)	824	714	948
$\mathrm{H}(3 \mathrm{~b})$	749	610	1053
H(5)	594	446	755
H(6)	422	493	435
$\mathrm{H}(9 \mathrm{a})$	798	253	672
$\mathrm{H}(9 \mathrm{~b})$	915	251	553
H(12)	547	227	-52
$\mathrm{H}(13 \mathrm{a})$	254	415	63
$\mathrm{H}(13 \mathrm{~b})$	301	386	-146
$\mathrm{H}(13 \mathrm{c})$	390	511	-32
$\mathrm{H}(14 \mathrm{a})$	1074	435	459
$\mathrm{H}(14 \mathrm{~b})$	908	521	436
$\mathrm{H}(14 \mathrm{c})$	1071	516	603

resembles that of several other previously reported germacrane sesquiterpenoids. ${ }^{16-24}$

Intramolecular bond distances and angles are given in Table 4, together with their estimated standard deviations computed from the least-squares residuals. Mean estimated standard deviations are ca. $0.01 \AA$ and 0.7°. Most observed bond distances and angles are comparable to those found in other germacrane ses-

[^1]quiterpenoids. ${ }^{18,20,21,23,24}$ Two or three differences which appear to be significant in terms of the estimated standard deviations are more likely to indicate a slight underestimation of errors.

Although the $\mathrm{C}-\mathrm{C}$ single-bonds in the ten-membered ring vary over a wide range ($1.472-1.526 \AA$), for the most part they do not differ significantly from their expected values. ${ }^{25}$ The bond distances in the furan and γ-lactone rings are similar to those found in a recent structure determination. $4,21,23,24,26$ The mean terminal Me bond distance at $C(10)$ and $C(11)$ is $1.491 \AA$, which

Table 4

Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$, with standard deviations in parentheses
(a) Bond distances

$\mathrm{O}(1)-\mathrm{C}(8)$	$1.352(9)$	$\mathrm{C}(4)-\mathrm{C}(15)$	
$\mathrm{O}(1)-\mathrm{C}(12)$	$1.359(8)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.447(11)$
$\mathrm{O}(2)-\mathrm{C}(6)$	$1.461(11)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.500(10)$
$\mathrm{O}(2)-\mathrm{C}(15)$	$1.379(9)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.337(10)$
$\mathrm{O}(3)-\mathrm{C}(15)$	$1.201(12)$	$\mathrm{C}(7)-\mathrm{C}(11)$	$1.428(8)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.472(14)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.515(10)$
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.325(11)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.506(12)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5266(16)$	$\mathrm{C}(10)-\mathrm{C}(14)$	$1.495(14)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.507(11)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.362(12)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.318(13)$	$\mathrm{C}(11)-\mathrm{C}(13)$	$1.486(10)$
(b) Valency angles			
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{C}(12)$	$107.0(5)$	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	$110.2(5)$
$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(15)$	$109.5(5)$	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$113.1(6)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	$125.1(8)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$136.6(7)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$110.3(8)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$112.8(7)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$110.4(8)$	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$121.3(8)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$125.9(8)$	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(14)$	$124.5(8)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(15)$	$124.3(8)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)$	$114.1(7)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(15)$	$108.7(6)$	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	$104.8(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$111.5(8)$	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(13)$	$127.5(7)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$102.7(6)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	$127.6(6)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$110.1(6)$	$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	$110.4(6)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$116.4(7)$	$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{O}(3)$	$121.4(7)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$131.8(6)$	$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(4)$	$107.3(7)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	$120.6(6)$	$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(4)$	$131.2(7)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(11)$	$107.4(6)$		

(c) Bond distances (\AA) associated with hydrogen-atom positions			
$\mathrm{C}(1)-\mathrm{H}(1)$	0.99	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~b})$	0.95
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{a})$	0.96	$\mathrm{C}(12)-\mathrm{H}(12)$	0.97
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~b})$	0.86	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{a})$	1.05
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{a})$	0.97	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~b})$	1.07
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~b})$	1.01	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{c})$	1.02
$\mathrm{C}(5)-\mathrm{H}(5)$	0.87	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{a})$	1.08
$\mathrm{C}(6)-\mathrm{H}(6)$	0.95	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~b})$	0.95
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{a})$	0.84	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{c})$	0.89

is noticeably short. Bond distances involving hydrogen atoms are also given [Table $3(c)$]; the means for $\mathrm{C}-\mathrm{H}$ ($0.96 \AA$) are less than the internuclear separations (1.08 \AA) measured spectroscopically.

The bond angles in the furan ring and γ-lactone ring are close to their expected value., ${ }^{45,26}$ The mean inter-

[^2]bond angle in the ten-membered ring is 112.5° except for the angles at atoms $C(1), C(4), C(5), C(7), C(8)$, and $C(10)$, which are slightly, but not significantly, greater than the normal tetrahedral angle of 109.4°. Maximum distorsion of bond angles occurs at $\mathrm{C}(8)$ in the ten-membered ring. The angle $C(7)-C(8)-C(9)$ of 136.6° gives an indication of the strain imposed at the juncture between the furan and the ten-membered ring. The torsion angles describing relationships within the ten-membered ring were calculated (Table 5). The endocyclic trans double-bonds

Table 5
Torsion angles $\left({ }^{\circ}\right)$ in the molecule

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-45.1	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(14)$	22.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$\mathbf{7 9 . 9}$	$\mathrm{C}(15)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	2.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-166.5	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(2)$	-2.9
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	117.5	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(11)$	1.1
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-1.6	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(13)$	0.1
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	0.2	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	134.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-46.0	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	-78.3
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	121.4	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	102.7
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	-156.5	$\mathrm{C}(5)-\mathrm{C}(6) \mathrm{C}(7)-\mathrm{C}(11)$	165.2
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	93.5	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{O}(3)$	-11.7
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)$	-57.3	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{O}(2)$	-0.8

in the ten-membered ring are generally subject to considerable strain, and in accord with this both the $\mathrm{C}(9)-$ $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ torsion angles (-156.5 and -166.5°) differ significantly from the ideal unstrained value of 180°. These values are similar to the corresponding angles in other germacrane sesquiterpenoids. ${ }^{\mathbf{1 6}-18,20}$ Deviations from the best plane through the various atom groups (Table 6) show the furan ring and

Table 6

Equations of planes and in square brackets displacements (\AA) of the atoms from mean planes; X, Y, Z are orthogonal (\AA) co-ordinates
Plane (I): $\mathrm{O}(2), \mathrm{O}(3), \mathrm{C}(4), \mathrm{C}(15)$
$0.8730 X-0.4654 Y-0.1456 Z=0.3367$

$$
[\mathrm{O}(2)-0.00, \mathrm{O}(3)-0.00, \mathrm{C}(3) 0.25, \mathrm{C}(4)-0.00, \mathrm{C}(5)-0.02,
$$ $\mathrm{C}(6) 0.02, \mathrm{C}(7) 1.22, \mathrm{C}(15) 0.00]$

Plane (II): C(1), C(9), C(10), C(14)
$0.7938 X-0.5226 Y+0.3108 Z=4.4440$
$[\mathrm{C}(1)-0.00, \mathrm{C}(2)-0.47, \mathrm{C}(8)-1.18, \mathrm{C}(9)-0.00, \mathrm{C}(10) 0.00$, C(14) -0.00]
Plane (III): $\mathrm{O}(1), \mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(11), \mathrm{C}(12)$
$0.7035 X+0.6134 Y-0.3586 Z=5.1420$
$[\mathrm{O}(1) 0.00, \mathrm{C}(6) 0.00, \mathrm{C}(7) 0.00, \mathrm{C}(8)-0.00, \mathrm{C}(9)-0.02$, $\mathrm{C}(11)-0.00, \mathrm{C}(12) 0.00, \mathrm{C}(13)-0.01, \mathrm{H}(12)-0.00]$
Plane (IV): C(1)—(10)
$0.3612 X+0.6196 Y-0.6968 Z=3.7229$
$[\mathrm{C}(1)-0.32, \mathrm{C}(2) 0.29, \mathrm{C}(3) 0.06, \mathrm{C}(4) 0.32, \mathrm{C}(5)-0.50$, $\mathrm{C}(6) 0.16, \mathrm{C}(7) 0.20, \mathrm{C}(8)-0.04, \mathrm{C}(9)-0.48, \mathrm{C}(10) 0.28]$
methyl group to be quite planar. The $\boldsymbol{\gamma}$-lactone ring is roughly planar, $C(5)$ and $C(6)$ being slightly displaced (by -0.02 and $0.02 \AA$) from the plane defined by $\mathrm{O}(2), \mathrm{O}(3)$, $C(4)$, and $\mathrm{C}(15)$. The dihedral angles between the plane of the ten-membered and the γ-lactone ring and the plane of the methyl group defined by $\mathrm{C}(1), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}(14)$ are 75 and 83° respectively. The dihedral angle between the furan ring and the ten-membered ring is $c a .16^{\circ}$.

In order to obtain detailed information on the molecular shape and the conformational features we have calculated the displacements from the plane through $C(6)-(8)$

Figure 2 The molecule in projection (a) parallel to, and (b) on the $\mathrm{C}(6)-(8)$ plane

Figure 3 Packing of the structure viewed down the b axis
in the ten-membered ring (Figure 2). The stereochemistry of linderalactone is characterized by a syn-arrangement of the methyl group and γ-lactone ring and by the

Table 7
Intermolecular distances ($<3.6 \AA$)

$\mathrm{O}(2)$	C(12 ${ }^{\text {II }}$)	3.461	$\mathrm{C}(1) \cdots \mathrm{C}\left(3^{1}\right)$	3.578
$\mathrm{O}(3)$	- C(6III)	3.526	$\mathrm{C}(4) \cdots \mathrm{C}\left(11{ }^{\text {III }}\right)$	3.594
$\mathrm{O}(3)$	- C(7III)	3.463	$\mathrm{C}(4) \cdots \mathrm{C}(12 \mathrm{III})$	3.455
$\mathrm{O}(3)$	$\mathrm{C}\left(14^{\text {r }}\right.$)	3.428	$\mathrm{C}(7) \cdots \mathrm{C}\left(15^{\text {v }}\right.$)	3.595

Roman numerals as superscripts refer to the following equivalent position relative to reference molecule at x, y, z :

$$
\begin{array}{lr}
\text { I } 1+x, y, 1+z & \text { IV } 2-x, \frac{1}{2}+y, 1-z \\
\text { II } 1-x, \frac{1}{2}+y,-z & \text { V } 1-x, y-\frac{1}{2}, 1-z \\
\text { III } 1-x, \frac{1}{2}+y, 1-z &
\end{array}
$$

crossed orientation of two double bonds in the tenmembered ring. The ten-membered ring has the same flattened conformation as was found in other typical
germacrane sesquiterpenoids. ${ }^{16-24}$ The methyl group at $\mathrm{C}(10)$ is α-oriented ${ }^{3}$ and the two double bonds [$\mathrm{C}(1)-$ $\mathrm{C}(10)$ and $\mathrm{C}(4)-\mathrm{C}(5)]$ are trans. The $\mathrm{C}(1) \cdots \mathrm{C}(4)$ and $\mathrm{C}(1) \cdots \mathrm{C}(5)$ non-bonded intramolecular separations in linderalactone are distinctly short (2.78 and $2.93 \AA$).

The molecular packing arrangement along the b axis is illustrated in Figure 3. The mean plane of the tenmembered ring is nearly parallel to the ($21 \overline{1}$) plane. All intermolecular distances were calculated, and the most
significant contacts ($<3.60 \AA$) are given in Table 7. The packing is efficient with several contacts approaching the sum of the van der Waals radii, the shortest contact being $\mathrm{O}(3) \cdots \mathrm{C}\left(14^{\mathrm{IV}}\right) 3.428 \AA$.

We thank Dr. K. Takeda for suggesting this investigation, Mrs. M. Teraoka-Miyawaki for the preparation of suitable crystals, and H. Nakai for technical assistance.
[6/1012 Received, 27th May, 1976]

[^0]: * See Notice to Authors No. 7 in J.C.S. Perkin II, 1976, Index issue.
 ${ }^{6}$ H. Koyama and K. Okada, Acta Cryst., 1975, A31, S18.
 7 S. A. Brenner and P. H. Gum, Tangent formula program for X-Ray Analysis of Noncentrosymmetric Crystals, Naval Research Laboratory, Washington, D.C., U.S.A., 1968.
 ${ }^{8}$ H. Koyama and K. Okada, SEARCHER, A Fortran Program for Automatic Heavy-atom Analysis of Organic Compounds, Shionogi Research Laboratory, Osaka, Japan, 1970.
 - M. Drew, A. Larson, and W. D. S. Motherwell, TANTWO, Generation and Refinement of Phases by Tangent Formula, University Chemical Laboratory, Cambridge, 1968.

[^1]: ${ }^{15}$ C. K. Johnson, ORTEP, A Fortran Thermal-ellipsoid Plot Program, Oak Ridge National Laboratory, Tennessee, Report ORNL 3794, 1965.
 ${ }_{16}$ F. H. Allen and D. Rogers, Chem. Comm., 1967, 588.
 ${ }^{17}$ F. Sorm, M. Suchý, M. Holub, A. Línek, I. Hadinec, and C. Novák, Tetrahedron Letters, 1970, 1893.
 ${ }_{18}$ P. Coggon, A. T. McPhail, and G. A. Sim, J. Chem. Soc. (B), 1970, 1024.
 ${ }_{10}$ E. J. Gabe, S. Neidle, D. Rogers, and C. E. Nordman, Chem. Comm., 1971, 559.

[^2]: ${ }^{20}$ F. H. Allen and D. Rogers, J. Chem. Soc. (B), 1971, 257.
 ${ }_{21}$ A. T. McPhail and G. A. Sim, J.C.S. Perkin II, 1972, 1313.
 ${ }_{22}$ K.-H. Lee, H. Furukawa, M. Kozuka, H.-C. Huang, P. A.
 Luhan, and A. T. McPhail, J.C.S. Chem. Comm., 1973, 476.
 ${ }^{23}$ P. J. Cox and G. A. Sim, J.C.S. Perkin II, 1974, 1355.
 ${ }_{24}$ P. J. Cox and G. A. Sim, J.C.S. Perkin II, 1975, 455.
 ${ }^{25}$ L. E. Sutton, Chem. Soc. Special Publ., No. 18, 1965.
 ${ }^{26}$ F. Mo and B. K. Sivertsen. Acta Cryst., 1971, B27. 115.

